Lesson 10. The Principle of Optimality and Formulating Recursions

0 Warm up

Example 1. Consider the following directed graph. The labels on the edges are edge lengths.

$\begin{array}{c} 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 4 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$			
In this order:			
a. Find a shortest path f	rom node 1 to node 8. What is its	length?	
Path:		Length:	
b. Find a shortest path from node 3 to node 8. What is its length?			
Path:		Length:	
c. Find a shortest path f	rom node 4 to node 8. What is its	length?	
Path:		Length:	
The principle of optima	lity		

- Let *P* be the path $1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$ in the graph for Example 1
 - *P* is a shortest path from node 1 to node 8, and has length 10
- Let P' be the path $3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8$
 - P' is a **subpath** of *P* with length 8
- Is *P*′ a shortest path from node 3 to node 8?
 - Suppose we had a path *Q* from node 3 to node 8 with length < 8
 - Let *R* be the path consisting of edge (1, 3) + Q
 - Then, *R* is a path from node 1 to node 8 with length
 - This contradicts the fact that

• Therefore,

The principle of optimality (for shortest path problems)

In a directed graph with no negative cycles, optimal paths must have optimal subpaths.

- How can we exploit this?
- Suppose we want to find a shortest path
 - from source node *s* to sink node t
 - in a directed graph (N, E)
 - with edge lengths c_{ij} for $(i, j) \in E$
- We consider the **subproblems** of finding a shortest path from node *i* to node *t*, for every node $i \in N$
- By the principle of optimality, the shortest path from node *i* to node *t* must be:

edge (i, j) + shortest path from j to t for some $j \in N$ such that $(i, j) \in E$

2 Formulating recursions

• Let

f(i) = length of a shortest path from node *i* to node *t* for every node $i \in N$

 \circ In other words, the function *f* defines the optimal values of the subproblems

- A recursion defines the value of a function in terms of other values of the function
- Using the principle of optimality, we can define *f* recursively by specifying
 - (i) the **boundary conditions** and
 - (ii) the **recursion**
- The boundary conditions provide a "base case" for the values of *f* :
- The recursion specifies how the values of *f* are connected:

Example 2. Use the recursion defined above to find the length of a shortest path from nodes 1, ..., 8 to node 8 in the graph for Example 1. Use your computations to find a shortest path from node 1 to node 8.

Shortest path from node 1 to node 8:

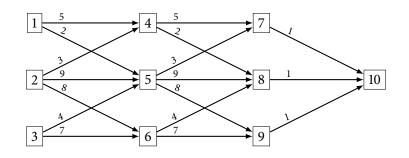
- Food for thought:
 - Does the order in which you solve the recursion matter?
 - Why did the ordering above work out for us?

3 Next lesson...

- Dynamic programs are not usually given as shortest/longest path problems as we have done over the past few lessons
- Instead, dynamic programs are usually given as recursions
- We'll get some practice using this "standard language" to describe dynamic programs

A Problems

Problem 1 (Shortest path recursions). Consider the following directed graph. The edge labels correspond to edge lengths.



Use the recursion for the shortest path problem defined in Lesson 10 to

- (i) Find the length of a shortest path from nodes 1, ..., 10 to node 10.
- (ii) Find a shortest path from node 1 to node 10.